Selected Solutions for Chapter 5:
 Probabilistic Analysis and Randomized Algorithms

Solution to Exercise 5.2-1

Since Hire-Assistant always hires candidate 1, it hires exactly once if and only if no candidates other than candidate 1 are hired. This event occurs when candidate 1 is the best candidate of the n, which occurs with probability $1 / n$.
Hire-Assistant hires n times if each candidate is better than all those who were interviewed (and hired) before. This event occurs precisely when the list of ranks given to the algorithm is $\langle 1,2, \ldots, n\rangle$, which occurs with probability $1 / n!$.

Solution to Exercise 5.2-4

Another way to think of the hat-check problem is that we want to determine the expected number of fixed points in a random permutation. (A fixed point of a permutation π is a value i for which $\pi(i)=i$.) We could enumerate all n ! permutations, count the total number of fixed points, and divide by n ! to determine the average number of fixed points per permutation. This would be a painstaking process, and the answer would turn out to be 1 . We can use indicator random variables, however, to arrive at the same answer much more easily.
Define a random variable X that equals the number of customers that get back their own hat, so that we want to compute $\mathrm{E}[X]$.
For $i=1,2, \ldots, n$, define the indicator random variable
$X_{i}=\mathrm{I}$ \{customer i gets back his own hat \} .
Then $X=X_{1}+X_{2}+\cdots+X_{n}$.
Since the ordering of hats is random, each customer has a probability of $1 / n$ of getting back his or her own hat. In other words, $\operatorname{Pr}\left\{X_{i}=1\right\}=1 / n$, which, by Lemma 5.1, implies that $\mathrm{E}\left[X_{i}\right]=1 / n$.

Thus,

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right] \quad \text { (linearity of expectation) } \\
& =\sum_{i=1}^{n} 1 / n \\
& =1
\end{aligned}
$$

and so we expect that exactly 1 customer gets back his own hat.
Note that this is a situation in which the indicator random variables are not independent. For example, if $n=2$ and $X_{1}=1$, then X_{2} must also equal 1. Conversely, if $n=2$ and $X_{1}=0$, then X_{2} must also equal 0 . Despite the dependence, $\operatorname{Pr}\left\{X_{i}=1\right\}=1 / n$ for all i, and linearity of expectation holds. Thus, we can use the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5

Let $X_{i j}$ be an indicator random variable for the event where the pair $A[i], A[j]$ for $i<j$ is inverted, i.e., $A[i]>A[j]$. More precisely, we define $X_{i j}=$ $\mathrm{I}\{A[i]>A[j]\}$ for $1 \leq i<j \leq n$. We have $\operatorname{Pr}\left\{X_{i j}=1\right\}=1 / 2$, because given two distinct random numbers, the probability that the first is bigger than the second is $1 / 2$. By Lemma 5.1, $\mathrm{E}\left[X_{i j}\right]=1 / 2$.
Let X be the the random variable denoting the total number of inverted pairs in the array, so that

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

We want the expected number of inverted pairs, so we take the expectation of both sides of the above equation to obtain
$\mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]$.
We use linearity of expectation to get

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{n}{2} \frac{1}{2} \\
& =\frac{n(n-1)}{2} \cdot \frac{1}{2} \\
& =\frac{n(n-1)}{4} .
\end{aligned}
$$

Thus the expected number of inverted pairs is $n(n-1) / 4$.

Solution to Exercise 5.3-2

Although Permute-Without-Identity will not produce the identity permutation, there are other permutations that it fails to produce. For example, consider its operation when $n=3$, when it should be able to produce the $n!-1=5$ nonidentity permutations. The for loop iterates for $i=1$ and $i=2$. When $i=1$, the call to Random returns one of two possible values (either 2 or 3), and when $i=2$, the call to Random returns just one value (3). Thus, Permute-WithoutIdentity can produce only $2 \cdot 1=2$ possible permutations, rather than the 5 that are required.

Solution to Exercise 5.3-4

Permute-By-Cyclic chooses offset as a random integer in the range $1 \leq$ offset $\leq n$, and then it performs a cyclic rotation of the array. That is, $B[((i+$ offset -1$) \bmod n)+1]=A[i]$ for $i=1,2, \ldots, n$. (The subtraction and addition of 1 in the index calculation is due to the 1 -origin indexing. If we had used 0 -origin indexing instead, the index calculation would have simplied to $B[(i+$ offset $) \bmod n]=A[i]$ for $i=0,1, \ldots, n-1$.)
Thus, once offset is determined, so is the entire permutation. Since each value of offset occurs with probability $1 / n$, each element $A[i]$ has a probability of ending up in position $B[j]$ with probability $1 / n$.

This procedure does not produce a uniform random permutation, however, since it can produce only n different permutations. Thus, n permutations occur with probability $1 / n$, and the remaining $n!-n$ permutations occur with probability 0 .

